The Analysis of Spaceborne SAR Interferometry Based on Strapdown Inertial Navigation Mechanism and Maximum Likelihood Method

نویسندگان

  • Tichun Wang
  • Hongyang Zhang
  • Lei Tian
  • Shuguang Lei
  • Liu Zhang
  • Wenpan Li
چکیده

In this paper, a spaceborne SAR interferometry system operates on the strapdown inertial navigation mechanism, which is based on maximum likelihood phase estimation method. It has been shown using simulated data that phase estimation of cross-track multi-baseline synthetic aperture radar (SAR) interferometric data is most efficiently achieved through a maximum likelihood phase estimation method. With the help of strapdown inertial navigation mechanism and compared to simulated data, dealing with real data implies that several calibration steps be carried out to ensure that the data fits the model. It is well known that a nonlinear frequencymodulation (NLFM) chirp waveform can shape the signal’s power spectral density and provide a radar matched filter output with lower sidelobes without loss of the signal-to-noise ratio. The strapdown inertial navigation mechanism can measure the apex angle and azimuth angle, the motion attitude of the carrier can be calculated by the three-axis displacement and revolution which are measured by this system. Compares the value of spaceborne SAR interferometry with the value which is measured by strapdown inertial navigation mechanism, the measurement accuracy will be improved by the analysis of strapdown inertial navigation mechanism and maximum likelihood phase estimation method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

Adaptive Fusion of Inertial Navigation System and Tracking Radar Data

Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

Performance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method

Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016